DOCTOR IN PHYLOSOPHY

IN

MATHEMATICS

CURRICULUM AND SYLLABUS

(For students admitted from academic year 2022-2023 onwards)

Department of Mathematics, School of Physical Sciences DIT University, Dehradun Uttarakahnd, India-248009

Approved by the Academic Council at its 22nd meeting held on 06.03.2023

CURRICULUM

Ph. D. (Mathematics)

Total credits: 16

Year 1

Semester 1 /II

Category	Course Code	Course Name	L	Т	Р	Credit
CC	MB901	Research Methodology	4	0	0	4
CC	CPE-RPE	Research Publication and Ethics	2	0	0	2
DE	MA***	Elective-1				4
DE	MA***	Elective-2				4
DC	MA629	Seminar and Workshop				2
Total						16

Elective-1

Category	Course Code	Course Name	L	Т	Р	Credit
DE	MA647	Fuzzy Sets and Applications	4	0	0	4
DE	MA746	Mathematical Modelling and Simulations	3	1	0	4
DE	MA758	Numerical Solution of PDE's	3	0	2	4
DE	MA649	Integral Equations & Calculus of Variations	3	1	0	4

Elective-2

Category	Course Code	Course Name	L	Т	Р	Credit
DE	MA727	Dynamical Systems	3	1	0	4
DE	MA766	Magneto hydrodynamics	3	1	0	4
DE	MA767	Thermal Instabilities and Methods	3	1	0	4
DE	MA768	Statistical Techniques	3	1	0	4

Course Title	Research Methodology		
Course Code	MB901		
Credits	4		
Course Category	CC		
Year	Ι		
L T P	4 0 0		
Course Objectives	Students of the course should master properties of matrices include use them to solve linear systems of equations and how they are use transformations between vector spaces.		
	After studying this course the student will be able to		
	CO1 : understand the fundamentals of research.		
	CO2: describe how to design the exploratory and experimental research		
Course Outcomes	problems.		
Course Outcomes	CO3: work with sampling problems and distributions with the sam	20	
		IIC.	
	CO4: calculate different aspects of data with SPSS software.		
	CO5: write a good research proposal and reports.	N7 0	
	Syllabus	No. of Lectures	
Unit-I: Fundamentals	s of Research	Letteres	
Search for existing lit selected (Case studio conceptual framewor Definition of variable measurement scales, tailed and two-tailed	Identifying and formulating a research problem, Literature review: terature (World Wide Web, Online data bases), Review the literature es, review articles and Meta-analysis), Develop a theoretical and k, Writing up the review, es: Concepts, indicators and variables, Types of variables, Types of Constructing the Hypothesis- Null(Research) and alternative, one- l testing, errors in testing. Ethical and Moral Issues in Research, woid plagiarism – Intellectual Property Rights – Copy right laws –	10	
Design of Experimen	ts: Research Designs -Exploratory, Descriptive and Experimental, - Types of Experimental Designs	8	
Unit-III: Sampling, S	Sampling distribution, and Data Collection		
	, Normal and binomial distribution, Reasons for sampling, sampling errors. Sources of Data-Primary Data, Secondary Data, Data	8	
Unit IV Statistical D	ata Analysis		
-	rential statistical analysis. Testing of hypothesis with Z-test, T-test square test, ANOVA, Correlation, Regression Analysis, Introduction using SPSS20.0	8	
Unit V Research Rep	ort		
elements- Objective, Procedures, Measure	report- Developing an outline, Formats of Report writing, Key Introduction, Design or Rationale of work, Experimental Methods, ements, Results, Discussion, Conclusion, Referencing and various writing of books and research papers, Writing a Research Proposal.	8	

	-
	1. C.R.Kothari, "Research Methodology", 5 th edition, New Age
	Publication,
	2. Ganesan R, Research Methodology for Engineers, MJP Publishers,
Text Books	Chennai. 2011
	3. Cooper, "Business Research Methods", 9 th edition, Tata McGraw hills
	publication
	1
	1. Walpole R.A., Myers R.H., Myers S.L. and Ye, King: Probability &
	Statistics for Engineers and Scientists, Pearson Prentice Hall, Pearson
	Education, Inc. 2007.
	2. Anderson B.H., Dursaton, and Poole M.: Thesis and assignment writing,
References Books	Wiley Eastern 1997.
Merer ences Doons	3. Bordens K.S. and Abbott, B.b.: Research Design and Methods, Mc
	Graw Hill, 2008.
	4. Morris R Cohen: An Introduction to logic and Scientific Method (Allied
	Publishers) – P 197 -222; 391 – 403.

Course Title	Research and Publication Ethics			
Course Code	CPE-RPE			
Credits	2			
Course Category	CC			
Year	Ι			
L T P	2 0 0			
Course Objectives	 Course Objective There are three objectives in research ethics. 1. The first objective is to protect human participants. 2. The second objective is to ensure that research is conducted i that serves interests of individuals or society as a whole. 3. And the third objective is to examine specific research activity projects for their ethical soundness, looking at issues such management of risk, protection of confidentiality and the projection informed consent. An ethically correct research involving participants must include the following components. 	ties and as the ocess of		
	Syllabus	No. of Lectures		
UNIT-I: Philosophy & Ethics Introduction to Philosophy– Definition, nature & scope, concept, branches Ethics- Definition, moral Philosophy, nature of moral judgment and reactions		4		
UNIT-II: Scientific (Conduct			
 Intellectual honesty Scientific Miscond Redundant Publica 	to science & research, and research integrity, uct: Falsification, Fabrication and Plagiarism (FFP), tions: duplicate & overlapping applications, active reporting & misrepresentation of data	4		

UNIT-III: Publication Ethics	
Publication Ethics: Definition, introduction & importance	
• Best practices/standards settings initiatives & guidelines: COPE, WAME etc.	
Conflicts of interest	
• Publication Misconduct: definition, concept, problems that lead to unethical	4
behavior and vice versa type	•
Violation of public ethics, authorship and contributor ship	
Identification of publication misconduct, complaints & appeals	
Predatory publishers & journals	
Practice:	
UNIT-IV: Open Access Publishing	
Open Access publication & initiatives.	
• SHERPA/RoMEO online resource to check publisher copyright and self-	
archiving policies	
• Software tool to identify predatory publications developed by SPPU	4
• Journal finder/journal suggestion tools viz, JANE, Elsevier Journal Finder,	
Springer Journal Suggested etc.	
UNIT-V: Publication Misconduct	
A. Group Discussion	
• Subject specific ethical issues, FFP, authorship	
Conflicts of interest	
Complaints & appeals: examples & fraud from India & Abroad.	4
B. Software tools	
 Use of plagiarism software like Turnitin, Urkund and other open source 	
software tools.	
software tools.	
UNIT-VI: Databases & Research Metrics	
A.Databases	
Indexing databases	
Citation databases: Web of science, Scopus etc.	
	4
B. Research Metrics	
• Impact factor of journal as per journal citation report, SNIP, SJR, IIP, Cite	
Score	
• Metrics: h- Index, g index, i10 index, altmetrics.	

Course Title	Advanced Mathematics			
Course Code	MA601			
Credits	4			
Course Category	CC			
Year	I			
L T P	3 1 0			
Course Objectives	To teach the student various topics in Numerical Analysis, linear Partial Differential with different methods. To derive heat and wave equations in 2D and 3D, statistical concepts to include measurements of location and dispersion, probability, probability distributions, sampling, estimation, hypothesis testing, Legendre Polynomial which may be solved by application of special functions, and optimization methods and algorithms developed for solving various types of optimization problems.			
Course Outcomes	 solving various types of optimization problems. After studying this course the student will be able to CO1. Recognize and apply appropriate theories, principles and concepts relevant to Numerical Analysis. Critically assess and evaluate the literature within the field of Numerical Analysis. CO2. Solve linear partial differential equations of both first and second order. Apply partial derivative equation techniques to predict the behavior of certain phenomena. CO3. To calculate and apply measures of location and measures of dispersion grouped and ungrouped data cases and to apply discrete and continuous probability distributions to various business problems. CO4. To explain the applications and the usefulness of the special functions and classify and explain the functions of different types of differential equations. CO5. Apply knowledge of optimization to formulate and solve engineering 			
	Syllabus	No. of Lectures		

Unit I: Numerical Techniques

Zeros of Transcendental and Polynomial equation using bisection method, Newton-Raphson method, Rate of convergence of above methods. Interpolation: Finite differences, difference tables, Newton's Forward and Newton's Backward Interpolation, Lagrange's and Newton divided difference formula for unequal intervals. Solution of system of Linear equations, Gauss- Seidal method, Crout method. Numerical Integration: Trapezoidal rule, Simpson's one-third rule, Simpson's three-eighth rule, Solution of ordinary differential (first order, second order and simultaneous) equations by Picard's and Fourth order Runga - Kutta methods.

Unit II: Partial Differential Equations (PDE)

Formation and Classification of PDE, Solution of One Dimension Wave Equation, and Heat Equation, Two Dimension Heat and Laplace Equation by Separation of variables Method.

Unit III: Special Functions Series solution of ODE of 2 nd order with variable coefficient with special emphasis to Legendre and Bessel differential equation, Legendre polynomial of first kind, Bessel Function of first kind and their properties.			
Unit IV: Statistics			
Elements of statistics, frequency distribution: concept of mean, median, mode, Standard derivation, variance and different types of distribution: Binomial, Poisson and Normal distribution, curve fitting by least square method, Correlation and Regression, Concept of Hypothesis Testing.			
Unit V: Optimization Formulation, Graphical method, Simplex method, Two-Phase simplex method, Duality, Primal- dual relationship, Dual-simplex method.			
	Total No. of Lectures	42	
Text Books	At Books1. R. K. Jain & S. R. K. Iyenger: Advanced Engineering Mathematics, 4th Edition, Narosa publication, 2014.		
References Books	 M.K. Jain, S.R.K. Iyenger & R.K. Jain: Numerical Methods for Scientific & Engg. Computation, New age International Publishers, (Reprint) 2007. S. C. Gupta & V. K. Kapoor: Fundamentals of Statistics: 11th Edition, Sultan Chand & Sons, (Reprint) 2014. 		

Course Title	Fuzzy Sets and Applications	
Course Code	MA647	
Credits	4	
Course Category	DSE	
Year	Ι	
Prerequisite Courses	Preliminary knowledge of Set Theory	
LTP	3 1 0	
Course Objectives	The objective of this course is to teach the students the need of fuzzy sets arithmetic operations on fuzzy sets, fuzzy relations, possibility theory, fuzz logic, and its applications.	
Course Outcomes	 After studying this course the student will be able to CO1: construct the appropriate fuzzy numbers corresponding to uncertain and imprecise collected data. CO2: handle the problems having uncertain and imprecise data. CO3: find the optimal solution of mathematical programming problems having uncertain and imprecise data. CO4: know the concepts of fuzzy graph, fuzzy relation, fuzzy morphism and fuzzy numbers. CO5: deal with the fuzzy logic problems in real world problems. 	
	Syllabus	No. of Lectures
	ets, Membership function, A-cuts, Properties of a-cuts, Extension, Intersections, Unions, Combinations of operations, Aggregation	8
Unit-II: Fuzzy Arithm Fuzzy numbers, Lingu Fuzzy equations.	netic istic variables, Arithmetic operations on intervals and numbers,	8
	ns, Projections and cylindrical extensions, Binary fuzzy relations, ingle set, Equivalence, Compatibility and ordering Relations,	10
Unit IV: Possibility T	•	
Fuzzy measures, Evide	nce and possibility theory, Possibility versus probability theory. valued logics, Fuzzy propositions, Fuzzy qualifiers, Linguistic	8
Unit-V: Applications of Washing machines Co		8
w asing machines, Co	ntrol systems engineering, Power engineering and Optimization. Total No. of Lectures	42
<u> </u>	1. Klir G. J. and Folger T.A., Fuzzy Sets, Uncertainty and	
 Text Books 1. Khr G. J. and Folger T.A., <i>Fuzzy Sets, Uncertainty and Information</i>, 1st Edition edition, Prentice Hall Inc., 1988. 2. Klir G.J. and Yuan B., <i>Fuzzy Sets and Fuzzy logic: Theory and Applications</i>, PHI, 1997. 		
References Books	 oks 1. Zimmermann H.J., <i>Fuzzy Set Theory and its Applications</i>, 4th Edition, Allied Publishers, 2001. 2. J. Yen and R. Langari, <i>Fuzzy Logic: Intelligence, Control, and Information</i>, Pearson Education, 2003. 	

Course Title	Mathematical Modelling and Simulations	
Course Code	MA746	
Credits	4	
Course Category	DSE	
Year	I	
Prerequisite Courses	Differential equation and optimization theory.	
L T P	3 1 0	
Course Objectives	The goal of the course is to introduce students to the element mathematical modeling process, the basic rules of logic, including axioms or assumptions, logical arguments, and rigorous pro- formulation of conjectures by abstracting general principles from	the role of roofs and
Course Outcomes	After studying this course the student will be able to CO1: translate everyday situations into mathematical statements which can be solved/analyzed, validated, and interpreted in contex CO2: identify assumptions which are consistent with the context problem and which in turn shape and define the mathematical characterization of the problem. CO3: revise and improve mathematical models so that they will b correspond to empirical information and/or will support more real assumptions. CO4: assess the validity and accuracy of the approach relative to the	kt. of the better istic
	requirement. CO5: apply tools to mathematically analyze and solve con	1
	requirement.	temporary
Unit I: Introduction	requirement. CO5: apply tools to mathematically analyze and solve con problems.	temporary
Models, reality, Proper building mathematical	requirement. CO5: apply tools to mathematically analyze and solve con problems.	temporary
Models, reality, Proper building mathematical Modeling using Prope	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis.	temporary No. of Lectures
Models, reality, Proper building mathematical Modeling using Prope functions as models. Unit II: Modeling	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus tties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. prtionality, Modeling using Geometric similarity; graphs of a	temporary No. of Lectures
Models, reality, Proper building mathematical Modeling using Prope functions as models. Unit II: Modeling	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis.	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Prope functions as models. Unit II: Modeling Modeling using Prope functions as models.	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protonality, Modeling using Geometric similarity; graphs of a	temporary No. of Lectures
Models, reality, Proper building mathematical Modeling using Prope functions as models. Unit II: Modeling Modeling using Prope functions as models. Fitting models to data a	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus tties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. prtionality, Modeling using Geometric similarity; graphs of a	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Proper functions as models. Unit II: Modeling Modeling using Prope functions as models. Fitting models to data a square criterion,	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protonality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Prope functions as models. Unit II: Modeling Modeling using Prope functions as models. Fitting models to data a square criterion, High order polynomial	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protionality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least models, Cubic Spline models.	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Proper functions as models. Unit II: Modeling Modeling using Proper functions as models. Fitting models to data a square criterion, High order polynomial Unit III: Discrete Pro	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protionality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least models, Cubic Spline models. babilistic & Optimization Modeling	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Proper functions as models. Unit II: Modeling Modeling using Proper functions as models. Fitting models to data a square criterion, High order polynomial Unit III: Discrete Pro Probabilistic modeling	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protionality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least models, Cubic Spline models.	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Proper functions as models. Unit II: Modeling Modeling using Proper functions as models. Fitting models to data as square criterion, High order polynomial Unit III: Discrete Pro Probabilistic modeling Linear Regression.	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protionality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least models, Cubic Spline models. babilistic & Optimization Modeling with discrete system; Modeling components & System Reliability;	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Proper functions as models. Unit II: Modeling Modeling using Proper functions as models. Fitting models to data g square criterion, High order polynomial Unit III: Discrete Pro Probabilistic modeling Linear Regression. Linear Programming –	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protionality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least models, Cubic Spline models. babilistic & Optimization Modeling	temporary No. of Lectures 8
Models, reality, Proper building mathematical Modeling using Proper functions as models. Unit II: Modeling Modeling using Proper functions as models. Fitting models to data a square criterion, High order polynomial Unit III: Discrete Pro Probabilistic modeling Linear Regression. Linear Programming – Sensitivity Analysis.	requirement. CO5: apply tools to mathematically analyze and solve con problems. Syllabus ties of models, model classification and characterization, steps in models, sources of errors, dimensional analysis. ortionality, Modeling using Geometric similarity; graphs of a protionality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least models, Cubic Spline models. babilistic & Optimization Modeling with discrete system; Modeling components & System Reliability;	temporary No. of Lectures 8

Population Growth, Graphical solutions of autonomous differential equations, numerical approximation methods-- Euler's Method and R.K. Method. Predator Prey Model, Epidemic models, Euler's method for systems of Differential

equations.

8

Unit V: Simulation M	odeling				
Discrete-Event Simula	ation, generating random numbers; simulating probabilistic	10			
behavior; Simulation of Inventory model and Queuing Models using C program.					
Other Types of si	mulation—Continuous Simulation, Monte-Carlo simulation.				
Advantages, disadvanta	ages and pitfalls of simulation				
	Total No. of Lectures	42			
	1. Frank R. Giordano, Mawrice D Weir & William P. Fox, A	first			
	course in Mathematical Modeling, 3rd Edition, Thomson				
	Brooks/Cole, Vikas Publishing House (P) Ltd., 2003.				
Text Books	2. Murray J.D., Mathematical Biology – I, 3rd Edition, Springer				
Text DOOKS	International Edition, 2004.				
	3. Kapoor J.N., Mathematical Models in Biology and Medicin	e, East			
	West Press, New Delhi, 1985.				
	1. Robert E. Shannon, Systems Simulation: The Art and Scien	ice,			
	Prentice Hall, U.S.A, 1975.				
References Books	2. Law Averill M. & Kelton W. David, Simulation Modeling a	and			
	Analysis, 3 rd Edition, Tata McGraw Hill, 1999.				
	• • •				

Course Title	Numerical Solutions of PDEs		
Course Code	MA758		
Course Coue	4		
Course Category	DSE		
Year	I		
Prerequisite Courses			
L T P	3 0 2		
Course Objectives	Introduce the finite difference schemes (FDS), order of accuracy of a scheme, concept of stability convergence, dissipation and dispersion, and exposed to FDS for hyperbolic, parabolic and elliptic PDE's.		
	After studying this course the student will be able to		
	CO1 : apply FDS to solve partial differential equations.		
	CO2: describe the boundary conditions for different schemes.		
Course Outcomes	CO3: understand the convergence estimate for parabolic equat posed, and stable stable initial BVP.		
	CO4: solve parabolic and elliptic PDEs with ADI schemes	and FDS	
	respectively.		
	CO5: apply finite difference schemes to solve Poisson's equation.		
	Syllabus	No. of Lectures	
Unit-I: Linear stabilit	v and convergence	Lectures	
	lic PDE's, finite difference schemes, convergence and consistency,	8	
•••	er and Von Neumann stability analysis for FDS.	0	
Unit-II: Dissipation an	LxW and Crank-Nicolson finite difference schemes boundary	0	
•	•	8	
	brithm, dissipation and dispersion.		
Unit-III: Parabolic PI			
	boundary conditions, finite difference schemes for parabolic and	8	
-	uations, ADI scheme on square, boundary conditions and stability	-	
for ADI schemes.			
-	ystems and estimations		
The theory of well-pose	The theory of well-posed IVPs scalar and systems, convergence estimates for smooth and		
non-smooth initial cond	ditions, convergence estimate for parabolic differential equations,	10	
Lax-Rich Myer equiva	lence theorem, well-posed and stable initial BVP, matrix method		
for stability.			
Unit-V: Elliptic PDE's	S		
-	regularity estimates, maximum principle and boundary condition,	8	
1 1	es for Poisson's equation.		
	Total No. of Lectures	42	
	1. Thomas J. W., Numerical Partial Differential Equations: F		
	Difference Methods, Springer, 1998.		
	 Strikwerda J. C., Finite Difference Schemes and Partial Differential 		
Text Books	Equations, SIAM, Philadelphia, 2nd Ed., 2004.		

References Books	1.	Leveque R. J., Finite Difference Methods for Ordinary and Partial
		Differential Equations, Steady State and Time Dependent
		Problems, SIAM Philadelphia, 2007.
	2.	Smith G. D., Numerical Solution of Partial Differential Equations:
		Finite Difference Methods, Oxford University press, 1977.

Course Title	Integral Equation and Calculus of Variations	
Course Code	MA649	
Credits	4	
Course Category	DSE	
Year	I	
Prerequisite Courses		
L T P	3 1 0	
Course Objectives	The main goal of this course is to introduce to students the fu concepts and some standard results of the integral equations, the r solving Integral Equations, the problems of the calculus of variation many methods and techniques without using deep knowledge of analysis.	nethods of ons and its
Course Outcomes	 After studying this course the student will be able to CO1. to recognize difference between Volterra and Fredholn Equations, First kind and Second kind, homogeneous and inhometc. CO2. to apply different methods to solve Integral Equations 	nogeneous
Course Outcomes	 understand the properties of geometrical problems. CO3. to understand the fundamental concepts of the space of a variations. CO4. to understand weak and a strong relative minimum of an interference constraint to the variational problems with moving boundary constraints. 	egral.
Syllabus		No. of Lectures
Unit-I: Preliminary C	oncepts	
Definition and classifi	ication of linear integral equations. Conversion of initial and	8
boundary value problems into integral equations. Conversion of integral equations into differential equations. Integro-differential equations.		
-		
Unit-II: Fredholm Integral Equations Solution of integral equations with separable kernels, Eigenvalues and Eigen functions. Solution by the successive approximations, and resolvent kernel. Solution of integral equations with symmetric kernels, Hilbert-Schmidt theorem, Green's function approach.		8
Unit-III: Fredholm Classical Theory Fredholm method of solution and Fredholm theorems.		8
Unit-IV: Volterra Integral Equations Successive approximations, Neumann series and resolvent kernel. Equations with convolution type kernels. Singular integral equations, Hilbert-transform, Cauchy type integral equations.		8
Unit-V: Calculus of V	ariations	
Basic concepts of the calculus of variations such as functionals, extremum, variations, function spaces, the brachistochrone problem. Necessary condition for an extremum, Euler's equation with the cases of one variable and several variables, Variational derivative. Invariance of Euler's equations. Variational problem in parametric form. Functionals dependent on one or two functions, Derivation of basic formula, Variational problems with moving boundaries, Broken extremals: Weierstrass –Erdmann conditions.		10
r	Total No. of Lectures	42
	1 otal 100. 01 Lectures	44

Text Books	1. Jerry, A. J., Introduction to Integral Equations with Applications,
	Wiley Publishers (2nd Edition), 1999.
	2. Kanwal R. P., Linear Integral Equations, Birkhäuser Bosten, (2nd
	Edition), 1997.
	3. Weinstock R., Calculus of Variations with Applications to Physics
	and Engineering, Dover Publications, 1974.
References Books	1. Chambers, L. G., Integral Equations: A Short Course, International
	Text Book Company Ltd., 1976.
	2. Gelfand, I. M., Fomin, S. V., Calculus of Variations, Dover Books,
	2000.

Course Title	Dynamical Systems	
Course Code	MA749	
Credits	4	
Course Category	DSE	
Year	I	
Prerequisite Courses	Fluid Dynamics	
L T P	3 1 0	
Course Objectives	The goal of the course to introduce the students with the concepts of well- posedness of differential equations, to familiarize with Bifurcations in 1Dand 2D flows, chaos, and exposure to stability analysis.	
Course Outcomes	After studying this course the student will be able to CO1: understand the Lipschitz condition, well-posedness of differential equation and contraction mapping theorem. CO2: describe the stability and bifurcation. CO3: understand nonlinear autonomous system in 2D flows. CO4: apply variable gradient method. CO5: understand the chaos and attractors.	
	Syllabus	No. of Lectures
Unit-I: Mathematical preliminaries Open and closed sets, compact set, dense set, continuity of functions, Lipschitz condition, smooth functions, vector space, normed linear space, inner product space, well-posedness of ordinary differential equations, Lipschitz continuity and contraction mapping theorem.		9
_	onal flows ty, linear stability analysis, saddle- node bifurcation, transcritical ifurcation, flows on the circle.	9
linearization, conserva	ional flows near autonomous systems, phase portraits, fixed points and tive systems, index theory, limit cycles, Poincare Bendixson criteria, Lienard systems.	10
Unit-IV: Lyapunov sta Variable gradient meth		10
Unit-V: Chaos Introduction to chaos and attractors.		4
	Total No. of Lectures	42
Text Books	 Strogatz S. H., Nonlinear Dynamics and Chaos, Perseus books publishing, 1994. Ricardo H. J., A Modern Introduction to Differential Equations Academic Press, 2nd Ed., 2009. Khalil H. K., Nonlinear Systems, PHI, 1996. 	
References Books	 Wiggins S., Introduction to Applied Nonlinear Dynamical Sy Chaos, Springer, 1996. Meiss J. D., Differential Dynamical Systems, SIAM, 2007. Grimshaw R., Nonlinear Ordinary Differential Equations, Scientific Publications, 1990. 	

Course Title	Magneto hydrodynamics	
Course Code	MA766	
Credits	4	
Course Category	DSE	
Year	Ι	
L T P	3 1 0	
Course Objectives	The main goal of this course is to introduce to students the fundamental concepts of magneto hydrodynamics, theory of Maxwell's equations and basic equations, Exact solution of classical MHD, two dimensional MHD Flows and applications of MHD.	
	Course Outcomes: Upon successful completion of this course, stu	idents will
	be able to	
	CO1: to provide the details of the derivation of ideal and resist	tive MHD
Course Outcomes	equations. CO2. to demonstrate the basic properties of ideal MHD. CO3. to solve problems under different kind of flows.	
	CO4 . to apply kinematic aspect of MHD in compressible fluid.	
	CO5. theoretical and practical background to Ph. D. thesis in heat	transport.
	Syllabus	No. of Lectures
Unit I		
Basic concepts of Magneto-hydrodynamics and its applications, Maxwell's equations, Frame of reference, Lorentz force, Electromagnetic body force.		
Unit II	, Electroninghetic body force.	
Fundamental equations Conduction current, K	of MHD, Ohm's law for a moving conductor, Hall current, inematic aspect of MHD, Magnetic Reynolds number, MHD MHD waves in compressible fluid, MHD approximations.	12
	ary conditions, One dimensional MHD flow, Hartmann flow, MHD Stoke's flow, MHD Rayleigh's flow, Hartmann-Stoke's 's boundary layer.	12
	flow (a) Aligned flow (b) Stagnation point flow, MHD flows in ects of Hall current on MHD flows in a rotating channel, MHD	10
	Total No. of Lectures	42
Text Books	1. T. G. Cowling, Magnetohydrodynamics, Interscience Publishers Net York, 1957.	
References Books	 S.I. Pai, Magnetohydrodynamics and Plasma Dynamics, 1st Edition, Springer Verlag, New York, (2nd Reprint), 1963. K. R. Cramer and S. I. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists, McGraw Hill, New York, 1973. 	

Course Title	Thermal Instabilities and Methods		
Course Code	MA767		
Credits	4		
Course Category	DSE		
Year	Ι		
L T P	3 1 0		
Course Objectives	The main goal of this course is to introduce to the students the fundate thermal stabilities, heat and mass transfer in incompressible fluids, convect rotation, magnetic field and solute gradients, different kinds of instabilities, linear and non-linear stability problems, and different kind of techniques to solve convection problems.	ction under convection	
Course Outcomes	 Upon successful completion of this course, students will be able to CO1. solve equations for conservation of mass, momentum and energy in fluid with porous medium under defined constraints. CO2. apply convection concepts in heat and mass transfer problems with different kind of fluids. CO3. apply numerical techniques to solve linear and non-linear instability problems. CO4. understand various types of convection instabilities like Rayleigh-Benard convection, Oberbeck convection, magneto-Marangoni convection, magnetic fluid convection, electro convection etc. CO5. understand perturbation techniques like regular and singular perturbations. 		
	Syllabus	No. of	
	Synabus	Lectures	
medium, Darcy's law, B energy in fluid and por modes, cell patterns.	dynamic stability, Rayleigh-Benard convection, concepts of porous Brinkman equation, equations for conservation of mass, momentum and bus medium, Boussinesq approximations, boundary conditions, normal	10	
solute gradient. Nonlinea	fluid and porous medium, Convection under rotation. Magnetic field and ar stability. Introduction to Nano fluids, Ferro fluids and polar fluids.	8	
Oberbeck convection,	v, various types of convection instabilities; Rayleigh-Benard convection, magneto-convection, Marangoni convection, magneto-Marangoni uid convection, electro convection, double diffusive convection, cross onvection.	10	
	echniques to solve linear and nonlinear instability problems; Galerkin echniques involving regular and singular perturbations.	6	
*	n of Fourier series (finite amplitude technique), numerical techniques, method, power integral technique, Spectral method.	8	
	Total No. of Lectures	42	
Text Books	 D.A. Nield, A. Bejan, Convection in Porous Medium, 5th Edition International Publishing, 2017. S.K. Som & G. Biswas, Introduction to Fluid Mechanics and Fluid Reviesd 2nd Edition, Tata McGraw-Hill, 2010. 		
References Books	 P.G. Drazin, W.H. Reid, Hydrodynamic Stability, 2nd Edition, Can University Press, 2004. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, De Publications, Dover Edition, 2013. 	C	

Course Title	Statistical Techniques	
Course Code	MA768	
Credits	4	
Course Category	DSE	
Year	I	
L T P		
Course Objectives	The main goal of this course is to introduce to the students the concepts of	
course objectives	random variable and stochastic processes, sampling techniques and	
	estimation, point and interval estimation of parameters, types of l	-
		rypouresis
	and hypothesis testing, basics of decision theory.	
Course Outcomes	Upon successful completion of this course, students will be able to	
	CO1. understand the concept of stochastic process with their	types and
	properties.	
	CO2. understand sampling techniques.	
	CO3. understand estimation theory.	oformore
CO4. understand the concepts of hypothesis testing and two types of errors. CO5. understand the tool used in decision theory.		
	cos, understand the tool used in decision theory.	No. of
	Syllabus	Lectures
Unit I: Stochastic Pro		
	continuous time Markov Chains, Poisson Process, Birth and Death	10
	in Insurance and Finance. Brownian Motion: Basic concepts of	
Unit II: Sampling	equations, Ito integrals, Geometric Brownian motion.	
1 0	ing, Stratified random sampling, PPS –sampling, Lahiri's scheme	
	Murthy estimator (for $n=2$). Horvitz Thompson Estimator of finite	10
5	Expression for Variance (HTE) and its unbiased estimator.	
Unit III: Inference	Expression for variance (1112) and its unorased estimator.	
	erval estimation, hypothesis testing, two type of errors, power	10
	idence interval, Cramer-Rao inequality, minimal sufficiency, Rao-	10
Blackwell theorem.		
Unit IV: Decision Tl	heory	
Basic elements of	Statistical Decision Problem. Expected loss, decision rules	
	andomized), decision principles, inference as decision problem,	12
	Bayes and minimax decision rule. Admissibility of minimax rules	
and Bayes rules.		
	Total No. of Lectures	42
Recommended	1. Sheldon M. Ross, S. <i>Stochastic Processes</i> , 2 nd Edition, Jo	ohn Wiley
Books	and Sons, New York, 1996.	
	1. E.L. Lehmann. and Romano J.P, <i>Testing Statistical Hypotheses</i> , 3 rd	
	Edition, Springer-Verlag New York, 2005.	
	2. E.L. Lehmann and George Casella, Theory of Point Estima	tion, 2 nd
	Edition, Springer Inc., 1998.	<i>.</i>